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Abstract

Covariance NMR is demonstrated for homonuclear 2D NMR data collected using the hypercomplex and TPPI methods.
Absorption mode 2D spectra are obtained by application of the square-root operation to the covariance matrices. The resulting
spectra closely resemble the 2D Fourier transformation spectra, except that they are fully symmetric with the spectral resolution
along both dimensions determined by the favorable resolution achievable along x2. An efficient method is introduced for the cal-
culation of the square root of the covariance spectrum by applying a singular value decomposition (SVD) directly to the mixed time-
frequency domain data matrix. Applications are shown for 2D NOESY and 2QF-COSY data sets and computational benchmarks
are given for data matrix dimensions typically encountered in practice. The SVD implementation makes covariance NMR amenable
to routine applications.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The recently introduced covariance NMR spectros-
copy method [1] serves as an alternative to homonuclear
2D Fourier transform (FT) NMR. It produces symmet-
ric spectra with the spectral resolution solely determined
by the sampling, apodization, and processing along the
detection dimension t2. The naturally high resolution
along the indirect dimension allows a reduction in the
number of t1 increments and thereby the saving of
NMR measurement time. It was previously demon-
strated [1] how covariance spectra can be obtained from
standard 2D NMR time-domain data sets s (t1, t2) [2] re-
corded using time-proportional phase incrementation
(TPPI) [3] along the indirect time domain t1. It is shown
here how covariance spectroscopy can be extended to
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2D NMR data sets recorded using the hypercomplex
method [4]. Moreover, a computationally efficient imple-
mentation is introduced, which is based on singular va-
lue decomposition (SVD) [5].

In the hypercomplex method by States et al. [4], two
2D data sets are acquired, one with cosine modulation,
sc (t1, t2), and one with sine modulation, ss (t1, t2), along
t1. 2D FT processing involves separate complex FT of
sc (t1, t2) and ss (t1, t2) along t2, followed by phase
correction and discarding of the imaginary (dispersive)
part: sc;sðt1;x2Þ ¼ Re

R1
0

dt2 expð�ix2t2Þsc;sðt1; t2Þ. A
complex signal A(t1,x2) = sc (t1,x2) + iss (t1,x2) is then
constructed and subjected to a complex Fourier
transformation along t1, followed by phase correction
along x1

F ðx1;x2Þ ¼
Z 1

0

dt expð�ix1t1ÞAðt1;x2Þ: ð1Þ

The real part of F (x1,x2) exhibits the desired pure
absorption features along x1 [4].
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2. Covariance NMR

Covariance NMR typically operates on the mixed
time-frequency domain data set A (t1,x2) = sc (t1,x2) +
iss (t1,x2). To reflect the discrete nature of the t1 and
x2 parameters in experimental 2D NMR data, we use
the following discretization scheme: t1 = (k � 1) Æ Dt1
(k = 1, . . . ,N1), where N1 is the total number of t1
increments and x2 (l) = 2p Æ m2 (l) = 2p{�SW/2 + (SW/
N2) Æ l} (l = 1, . . . ,N2) where N2 is the total number of
frequency points along x2. Dt1 = (SW) �1 is the t1 incre-
ment and SW is the spectral width in Hz, A (t1,x2) can
be represented in practice by a complex N2 · N1 matrix
A with elements A (k, l) = A ((k � 1) Æ Dt1,x2 (l)) =
sc (k, l) + iss (k, l). The complex covariance matrix C is
then given by

Cij ¼
1

N 1 � 1

XN1

k¼1

ðAðk; iÞ � hAðiÞiÞ�ðAðk; jÞ � hAðjÞiÞ or

C ¼ 1

N 1 � 1
~A
y � ~A; ð2Þ

where hAðjÞi ¼ N�1
1

PN1

k¼1Aðk; jÞ is the value of the aver-
age 1D spectrum at frequency x2 (j) and ~A is obtained
from A by making it offset free

~Aij ¼ Aij � hAðjÞi: ð3Þ
Matrix element Cij is the mathematical covariance be-
tween the complex amplitudes sc (k, i) + iss (k, i) and
sc (k, j) + iss (k, j) at frequencies x2 (i) and x2 (j) of the
N1 1D spectra k. This spin correlation information is ob-
tained without the use of a second Fourier transforma-
tion along the indirect time domain t1. The covariance
matrix C is Hermitian and has thereby along the second
dimension, x0

2, the same high spectral resolution as
along the direct dimension x2. In contrast to 2D FT, a
zeroth order phase correction along t1, A0ðk; iÞ ¼
eiu1Aðk; iÞ, does not affect C and can therefore be omit-
ted. Depending on the type of 2D NMR experiment
and the sample, the covariances Cij can take positive
or negative values. The covariance spectrum C therefore
qualitatively differs from an absolute value or a power
spectrum.

It is shown in the Appendix that for a large class of
2D NMR experiments, including NOESY, TOCSY,
and COSY experiments, the real part of C contains all
the relevant spectral information, while the imaginary
part is essentially zero and contains mainly noise. The
real part of C is given by

RefCg ¼ covðscÞ þ covðssÞ; ð4Þ
where covðsc;sÞ ¼ 1

N1�1

PN1

k¼1ðsc;sðk; iÞ � hsc;sðiÞiÞðsc;sðk; jÞ�
hsc;sðjÞiÞ.

A real covariance matrix is also obtained when using
the TPPI acquisition scheme along t1 [1]. Both the
A (t1,x2) = sTPPI (t1,x2) matrix and the corresponding
covariance matrix C, calculated using Eq. (4), are real.
Using Parseval�s theorem it has been shown [6] that
for a large class of 2D NMR experiments the real
covariance matrix C obtained from Eq. (4) or from a
TPPI data set is related to the real part of the 2D FT
spectrum F (Eq. (1)) via

C / FT � F: ð5Þ
By taking the square root of the real part of C, a sym-
metric matrix S = C1/2 is obtained, which has high reso-
lution along both dimensions and which otherwise
closely resembles the 2D FT spectrum F (see Section
4). The covariance NMR method is complementary to
other resolution enhancement methods; it can be com-
bined, for example, with the time-domain linear predic-
tion method [7] by applying linear prediction prior to
the covariance processing.
3. SVD formulation

The square root of the covariance matrix, S = C1/2,
can be calculated by first diagonalizing C:

Cvj ¼ kjvj or C ¼
X
j

kjvj � vyj ; ð6Þ

where kj is the real eigenvalue to eigenvector vj. It fol-
lows for S

S ¼ C1=2 ¼
X
i

ffiffiffiffi
kj

p
vj � vyj ¼ Q �D1=2 �Qy; ð7Þ

where Q contains the eigenvectors vj as columns and D is
a diagonal matrix, which contains the eigenvalues kj of
C as its diagonal elements. Because C is a covariance
matrix, all eigenvalues fulfill kj P 0 and a maximum of
N1 eigenvalues are not equal to zero. In what follows,
Eqs. (6) and (7) are referred to as the ‘‘standard
method.’’

The computation of the covariance matrix requires
OðN 1N 2

2=2Þ floating point operations, whereas the
square-root operation based on diagonalization of C re-
quires OðN 3

2Þ floating point operations. For some of the
larger 2D NMR data matrices encountered in practice,
the computational effort can be quite significant even
on a modern computer workstation (see Tables 1 and
2). Therefore, a more efficient computational approach
is desirable. In practice, the number of t1 increments,
N1, is often much smaller than N2. In this case, a signif-
icant speed-up for the computation of S can be obtained
by applying a singular value decomposition (SVD) [5] to
the transposed real mixed time-frequency matrix ~AT:

~A
T ¼ U � W � VT; ð8Þ

where U is a N2 · N1 matrix, V is a N1 · N1 matrix pro-
vided that N1 6 N2.W is a diagonal N1 · N1 matrix with
real singular values wi P 0 as its diagonal elements.
Matrices U and V are both orthogonal (VT Æ V = 1,



Table 1
Computational performance for TPPI data in seconds

Method N2 (real) 256 512 1024 2048 4096

N1 (real) 256 512 128 256 512 1024 128 256 512 1024 2048 1024

Standard covariance method Covariancea <0.1 0.4 0.3 0.9 1.9 3.7 1.9 3.9 7.7 15.0 29.7 60.4
Diagb 0.2 1.5 12.8 11.7 10.3 12.9 106 101 91.3 85.6 88.2 857
Reconstructc 0.1 0.7 0.7 1.4 2.7 5.5 2.9 5.6 11.1 21.9 45.0 88.4
Totald 0.3 2.7 13.9 14.0 15.2 22.6 111 111 111 124 165 1009

Direct SVD method SVDe 0.2 2.2 0.2 1.2 6.3 20.0 0.7 2.53 11.5 55.2 132 98.7
Reconstructf 0.1 0.7 0.6 1.3 2.7 5.3 2.8 5.4 10.8 21.3 43.3 83.6
Totald 0.3 3.0 0.9 2.6 9.3 25.8 3.6 8.2 22.9 77.9 178 184

a Time for construction of covariance matrix.
b Time for diagonalization of covariance matrix.
c Time for reconstruction of square root of covariance matrix from eigenvectors and eigenvalues.
d Total computational time (including reading and writing of input and output files).
e Time for diagonalization of input mixed time-frequency data matrix via SVD (Eq. (10)).
f Time for reconstruction of spectrum (from eigenvectors and singular values).

Table 2
Computational performance for hypercomplex data in seconds

Method N2 (real) 256 512 1024 2048 4096

N1 (complex) 128 256 64 128 256 512 64 128 256 512 1024 512

Standard covariance method Covariancea <0.1 0.3 0.3 0.6 1.3 2.5 1.5 2.8 5.3 10.3 20.1 42.3
Diagb 0.2 1.6 12.7 11.6 10.4 13.6 106 103 92.3 86.2 113 853
Reconstructc <0.1 0.7 0.7 1.4 2.7 5.5 2.9 5.7 11.1 22.1 45.6 88.8
Totald 0.3 2.7 13.7 13.7 14.7 22.2 111 112 109 120 181 988

Direct SVD method SVDe 0.1 1.1 0.1 0.5 2.5 13.2 0.3 1.4 5.1 22.9 113 44.9
Reconstructf 0.1 0.6 0.7 1.3 2.7 5.4 2.9 5.8 11.3 22.0 43.8 87.1
Totald 0.2 1.8 0.8 1.9 5.3 19.0 3.3 7.4 16.8 45.8 158 134

a Time for construction of complex covariance matrix.
b Time for diagonalization of real part of complex covariance matrix.
c Time for reconstruction of square root of real part of complex covariance matrix from eigenvectors and eigenvalues.
d Total computational time (including reading and writing of input and output files).
e Time for diagonalization of input mixed time-frequency data matrices via SVD (Eq. (10)).
f Time for reconstruction of spectrum (from eigenvectors and singular values).
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UT Æ U = 1) and U contains as its columns the eigenvec-
tors vj of C, as can be seen from the following identity:

C ¼ ~A
T � ~A ¼ U � W � VT � V � W �UT

¼ U � W 2 �UT: ð9Þ

It further follows that the squares of the diagonal
elements of W, w2

i , correspond to the (non-zero)
eigenvalues of C. For the square root of C one simply
obtains

S ¼ ð ~AT � ~AÞ1=2 ¼ U � W �UT: ð10Þ

Eq. (10) provides a straightforward recipe for the
efficient calculation of the square root of the real covari-
ance spectrum without requiring the explicit computa-
tion of the covariance matrix of Eq. (2) in the first
place. Moreover, Eq. (9) corresponds to a principal
component analysis (PCA) with the eigenvectors of C
containing useful information, for example for the spec-
tral deconvolution of chemical mixtures [8]. Eq. (10) can
be generalized for complex (i.e., hypercomplex or States-
type) data by replacing the transpose by the adjoint
operation. The SVD of a complex mixed time-frequency
matrix yields the square root of the complex covariance
matrix, which is equal to the square root of the real part
if the imaginary part is zero. However, due to the pres-
ence of noise experimental NMR data possess a non-
zero imaginary part, which affects the square root of
the complex covariance matrix resulting in small spec-
tral artifacts. It is found that the square root of the real
part of the complex covariance matrix is closely related
to the sum of the two individual square roots of the
covariance matrices derived from the cosine and sine
modulated data sets. Those square roots can then be effi-
ciently obtained by the application of separate SVDs to
the two data sets. This treatment proves to be an excel-
lent approximation, which is void of the artifacts exhib-
ited by the square root of the complex covariance
matrix. The key advantage of the SVD method over
the diagonalization method is its computational effi-
ciency since it requires only OðN 2

1N 2Þ operations. There-
fore, it is considerably faster whenever N1 is sufficiently
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smaller than N2, a situation that is often encountered in
practice.

The sequential steps of the covariance processing of a
hypercomplex time-domain data set consisting of
sc (t1, t2) and ss (t1, t2) can be summarized as follows:

1. After complex Fourier transformation of sc (t1, t2) and
ss (t1, t2) with respect to t2 and phase and baseline
correction in x2, the real parts scðt1;x2Þ ¼ RefFTt2

ðscðt1; t2ÞÞg and ssðt1;x2Þ ¼ RefFTt2ðssðt1; t2ÞÞg are
retained.

2. sc (t1,x2) and ss (t1,x2) are made offset free (Eq. (3))
before they are separately subjected to the SVD and
the matrix square-root construction operation (Eqs.
(9) and (10)), yielding Scðx0

2;x2Þ and Ssðx0
2;x2Þ.

3. The final 2D covariance spectrum is then calculated
as the sum Sðx0

2;x2Þ ¼ Scðx0
2;x2Þ þ Ssðx0

2;x2Þ.

For a TPPI-type time-domain data set s (t1, t2) =
sTPPI (t1, t2), processing is slightly simpler:

1. After complex Fourier transformation of s (t1, t2) with
respect to t2 and phase and baseline correction in x2,
the real part sðt1;x2Þ ¼ RefFTt2ðsðt1; t2ÞÞg is retained.

2. s (t1,x2) is made offset free (Eq. (3)) before it is sub-
jected to the SVD and the matrix square-root con-
struction operation (Eqs. (9) and (10)), yielding the
final covariance spectrum Sðx0

2;x2Þ.
4. Results and discussion

The direct SVDmethod is compared with the standard
covariance method by applying it to 2D 2QF-COSY [9]
and NOESY data [10–12] recorded on a 8 mM sample
of human ubiquitin at pH 6.5 inD2O purchased from Sig-
ma–Aldrich (St. Louis, MO). The 2QF-COSY experi-
ment was collected in hypercomplex States-TPPI mode
[3,4] with N2 = 1024 complex points along t2 and
N1 = 512 complex points along t1. The NOESY experi-
ment was collected with a mixing time of 200 ms with
N2 = 1024 complex points along t2 and N1 = 1024 real
points along t1 for the TPPI case [3] and N1 = 512 com-
plex points in the States-TPPI case [3,4]. All experiments
were collected at 298 K at 600 MHz proton frequency.
The time-domain data were zero-filled to 2048 complex
points along the t2 dimension, apodized by a cosine bell
function, and Fourier transformed. For 2D FT process-
ing, apodization along the t1 dimension was applied using
a cosine bell function. Spectra with a data matrix size
smaller than 2048 · 1024 (real + imaginary) points were
generated by truncation of the original data matrix to
the final size. Spectra with a data matrix size larger than
2048 · 1024 (real + imaginary) points were generated by
zero filling of the original data matrix to the final size.
Apodization, phase correction, and Fourier transforma-
tion was performed using NMRPipe [13]. 2DNMR spec-
tra were visualized using SPARKY 3 (T.D. Goddard,
D.G. Kneller, University of California, San Francisco).

Computational benchmarks were obtained for differ-
ent data matrix dimensions for the standard covariance
method using Eq. (7) and the direct SVD method using
Eq. (10) for TPPI (Table 1) and States-TPPI data (Table
2). In the case of the standard method covariance matri-
ces were diagonalized using the CLAPACK [14] subrou-
tine optimized for symmetric matrices, whereas in the
case of the direct SVD method the asymmetric mixed
time-frequency matrices were processed by the CLA-
PACK SVD subroutine. All calculations were per-
formed on an AMD Opteron 64 bit 3 GHz computer
with 2 GBytes of RAM.

In the standard method the computationally most
expensive part is the matrix diagonalization, which in
terms of computational time is followed by the recon-
struction of the square-root spectrum and by the calcula-
tion of the covariance matrix itself. For example, for a
2048 · 512 hypercomplex mixed time-frequency input
matrix, computation of the covariance matrix takes
10.3 s while matrix diagonalization takes 86.2 s. The di-
rect SVD method, on the other hand, avoids the explicit
construction of the covariance matrix and takes advan-
tage of the improved efficiency of SVD over diagonaliza-
tion whenN1 < N2. SVD of the same data matrix, i.e., the
two separate SVDs of the cosine and sine modulated
matrices, takes only 22.9 s and the total computational
time is 45.8 s (Table 2), which represents a 2.6-fold
speed-up over the standard method. In the case of
N1 = 256 and N2 = 2048 the SVD takes 5.1 s resulting
in a total computational time of 16.8 s, which corre-
sponds to a 6.5-fold speed-up over the standard covari-
ance method taking a total computational time of 109 s.
Although 2D FT processing is typically by a factor 5–
20 faster, the speed-up achieved by the SVD procedure
turns covarianceNMR spectroscopy into a computation-
ally affordable general purposeNMRprocessingmethod.

While the standard diagonalization method performs
equally well for TPPI and hypercomplex input matrices
of equivalent size, for States-TPPI data the direct SVD
method is faster than for TPPI data. The difference re-
sults from the fact that for a 2048 · 512 hypercomplex
input matrix two real SVDs of 2048 · 512 matrices are
performed, while the TPPI case involves one real SVD
of a 2048 · 1024 input matrix. Since the SVD scales with
N 2

1, the SVD in the hypercomplex case saves a factor of 2
in computational time.

A comparison of 2D spectra obtained by the covari-
ance method and by 2D FT is given in Figs. 1 and 2.
Fig. 1 shows the same section of the 2QF-COSY experi-
ment of ubiquitin processed by different methods. Panel
A shows the 2D FT spectrum, panel B depicts the square
root of the covariance spectrum calculated from the 2D
FT spectrum (Eq. (5)), and panel C shows the covariance



Fig. 1. Comparison of aromatic sub-region of a 2D 2QF-COSY experiment of ubiquitin processed by 2D FT and covariance methods, respectively.
Panel A was processed using the standard 2D FT method, panel B depicts the covariance spectrum calculated from the 2D FT spectrum using Eq. (5)
followed by the matrix square-root operation, and panel C shows the covariance spectrum calculated from the mixed time-frequency data (Eq. (10)).

Fig. 2. Comparison of spectral HN–Ha region of a 2D NOESY experiment of ubiquitin with 200 ms mixing time processed by different methods.
Panels A and D were processed using the standard 2D FT method, panels B and E depict the covariance spectrum calculated by the standard
covariance method, and panels C and F were processed using the direct SVD method (Eq. (10)). Panels A, B, and C were calculated using 512
complex t1 increments, whereas panels D, E, and F were processed using only the first 192 complex t1 increments.
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spectrum computed from the mixed time-frequency data
(Eq. (10)). The three spectra are very similar, as is ex-
pected from the theory, displaying phase sensitivity along
both dimensions for both diagonal and cross-peaks.

Fig. 2 shows the same HN–Ha region of the 2D
NOESY experiment collected using States-TPPI pro-
cessed by different methods. Panel A was processed by
2D FT, panel B by the standard covariance method
(Eq. (7)), and panel C by the SVD-based covariance
method (Eq. (10)). Again, all three spectra are very sim-
ilar. The improvement in resolution along x0

2=x1 pro-
vided by the covariance method becomes apparent in
panels D, E, and F, which show the same spectral region
processed using only the first N1 = 192 t1 increments.
5. Conclusion

The extension of covariance NMR spectroscopy to
hypercomplex 2D NMR data makes this method acces-
sible to a wide range of experimental NMR data. The
square-root operation applied to the covariance matrix
produces spectra that closely resemble the 2D FT spec-
tra, except that they benefit from resolution enhance-
ment along x0

2 without requiring apodization or phase
correction along this dimension. The direct SVD meth-
od presented here is an efficient tool for covariance
NMR processing applicable to both hypercomplex and
TPPI-type data. It substantially reduces the computa-
tional time for rectangular 2D NMR input matrices typ-



282 N. Trbovic et al. / Journal of Magnetic Resonance 171 (2004) 277–283
ically encountered in practice. The SVD implementation
turns covariance NMR into a viable alternative to 2D
FT NMR in the liquid and in the solid state that is suit-
able for routine applications. Covariance NMR spec-
troscopy along with its SVD implementation is readily
applicable to homonuclear (but generally not to hetero-
nuclear) 2D planes in homo- and heteronuclear 3D and
4D NMR experiments. A SVD-based subroutine for
covariance NMR processing will be made available on
our website.
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Appendix A

In this appendix, the covariance NMR spectrum is
explicitly calculated for a generic homonuclear 2D NMR
data set collected using the following pulse scheme [2]:

90�y;x � t1 � 90��y �mixing� 90�y � t2; ðScheme A:1Þ

where frequency discrimination along t1 is achieved by
the hypercomplex method [4] applied to the excitation
pulse. During the mixing period magnetization is ex-
changed between the Zeeman magnetizations of spins
1/2 with individual resonance frequencies xk (k =
1, . . . ,N) according to a symmetric transfer matrix T
with elements Tlk that denote the amount of magnetiza-
tion transferred from spin k to spin l during the mixing
process. The transfer can be due to, for example, isotro-
pic mixing (TOCSY) or cross-relaxation (NOESY).
After the second 90� pulse, the longitudinal magnetiza-
tions are, depending on whether the excitation pulse
phase is x or y,

rcðt1Þ ¼
XN
k¼1

cosðxkt1ÞIkz or rsðt1Þ ¼
XN
k¼1

sinðxkt1ÞIkz;

ðA:1Þ
respectively. After the mixing period, the density
operators are rcðt1; smÞ ¼

PN
k;l¼1T lk cosðxkt1ÞI lz and

rsðt1; smÞ ¼
PN

k;l¼1T lk sinðxkt1ÞI lz, respectively. The final
90�y pulse converts the Ikz operators into transverse Ikx
operators, which precess during the detection time t2
yielding signal matrices according to

scðt1; sm; t2Þ ¼
XN
k;l¼1

T lk cosðxkt1Þeixlt2 and

ssðt1; sm; t2Þ ¼
XN
k;l¼1

T lk sinðxkt1Þeixlt2 ;

ðA:2Þ
where transverse T2 relaxation has been neglected. Fou-
rier transformation along t2, phase correction, and dis-
carding of the imaginary part yields

scðt1; sm;x2Þ ¼ p
XN
k;l¼1

T lk cosðxkt1Þdðx2 � xeÞ;

ssðt1; sm;x2Þ ¼ p
XN
k;l¼1

T lk sinðxkt1Þdðx2 � xeÞ;
ðA:3Þ

which can be combined in form of the complex data
set

sðt1; sm;x2Þ ¼ scðt1; sm;x2Þ þ issðt1; sm;x2Þ: ðA:4Þ
2D FT processing proceeds with a complex FT along t1,
which yields the 2D spectrum

F ðx1; sm;x2Þ ¼ p2
XN
k;l¼1

T lkdðx1 � xkÞdðx2 � xeÞ: ðA:5Þ

By contrast, in covariance spectroscopy the covari-
ances between pairs of t1 columns to frequencies x2

and x0
2 are given by Eq. (2)

Cðx0
2;x2Þ ¼ hðsðt1; sm;x0

2Þ

� hsðt1; sm;x0
2ÞiÞ

yðsðt1; sm;x2Þ
� hsðt1; sm;x2ÞiÞi; ðA:6Þ

where the angular brackets indicate averaging over t1.
Insertion of Eq. (A.4) into Eq. (A.6) yields

Cðx0
2;x2Þ ¼ hscðt1; sm;x0

2Þscðt1; sm;x2Þi
� hscðt1; sm;x0

2Þihscðt1; sm;x2Þi
þ hssðt1; sm;x0

2Þssðt1; sm;x2Þi
� hssðt1; sm;x0

2Þihssðt1; sm;x2Þi
þ ihscðt1; sm;x0

2Þssðt1; sm;x2Þi
� ihscðt1; sm;x0

2Þihssðt1; sm;x2Þi
� ihssðt1; sm;x0

2Þscðt1; sm;x2Þi
þ ihssðt1; sm;x0

2Þihscðt1; sm;x2Þi: ðA:7Þ

After insertion of Eq. (A.3) into Eq. (A.7) one obtains

hscðt1; sm;x0
2Þscðt1; sm;x2Þi ¼ p2

X
lkl0k0

T lkT l0k0dðx2 � xlÞ

� dðx0
2 � xl0 Þ 1

2
ðdxkxk0 þ dxk�xk0 Þ;

hssðt1; sm;x0
2Þssðt1; sm;x2Þi ¼ p2

X
lkl0k0

T lkT l0k0dðx2 � xlÞ

� dðx0
2 � xl0 Þ 1

2
ðdxkxk0 � dxk�xk0 Þ;

ðA:8Þ

where hcosðxkt1Þ cosðxk0 t1Þi ffi 1
2
ðdxkxk0 þ dxk�xk0 Þ and

hsinðxkt1Þ sinðxk0 t1Þi ffi 1
2
ðdxkxk0 � dxk�xk0 Þ was used and

dxkxk0 is the Kronecker delta. Using hcosðxkt1Þi ffi
hsinðxkt1Þi ffi hcosðxkt1Þ sinðxk0 t1Þi ffi 0, one then obtains
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Cðx0
2;x2Þ ffi hscðt1; sm;x0

2Þscðt1; sm;x2Þi
þ hssðt1; sm;x0

2Þssðt1; sm;x2Þi
¼ p2

X
ll0k

T lkT l0kdðx2 � xlÞdðx0
2 � xl0 Þ; ðA:9Þ

reflecting that the covariance cross-peak intensity at po-
sition ðx0

2;x2Þ ¼ ðxl0 ;xlÞ is p2
P

kT lkT kl0 . Therefore, the
real part of the covariance spectrum Cðx0

2;x2Þ is related
to the 2D FT spectrum F (Eq. (A.5)) via Eq. (5)

C ¼ 1

p2
FyF: ðA:10Þ

In analogy to the TPPI case, the square root of the real
part of the covariance spectrum of hypercomplex data
closely resembles the 2D FT spectrum. The square-root
operation can again be performed either by diagonaliza-
tion of the real part of the covariance matrix or by SVD
of the mixed time-frequency data. It can be seen from
the above theoretical treatment that the imaginary part
of the covariance matrix is zero for 2D NMR experi-
ments following (Scheme A.1).
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